Calculation for dose of Dopamine \& Dobutamine

How to give Dopamine

1 ml of commercially available contains 40 mg of dopamine. In a baby weighing 2.5 kg if we want to start dopamine at a rate of $10 \mathrm{mcg} / \mathrm{kg} / \mathrm{min}$:
$=10 \times 2.5=25 \mathrm{mcg} / \mathrm{min}=25 \times 60=1500 \mathrm{mcg} / \mathrm{hour}=1500 \times 24=36000 \mathrm{mcg} / \mathrm{day}$
$=36 \mathrm{mg}$ of dopamine in 24 hours
It means if we add 0.9 ml of dopamine in 24 ml of fluid and give @ rate of $1 \mathrm{ml} / \mathrm{hr}$ with syringe pump or 1 microdrops per min (which is virtually impossible) with the micro drip set, we will give dopamine @ $10 \mathrm{mcg} / \mathrm{kg} / \mathrm{min}$.

Increment

If we want to increase dopamine to $15 \mathrm{mcg} / \mathrm{kg} / \mathrm{min}$ then give the same fluid @ $1.5 \mathrm{ml} / \mathrm{hr}$
The above method is to give a separate infusion of Dopamine, however it could also be added to $\mathbf{2 4}$ hours fluid as explained below:
e.g. 2.5 kg neonate in shock with a fluid requirement of $100 \mathrm{ml} / \mathrm{kg} / \mathrm{day}$, has received 2 fluid boluses of $10 \mathrm{ml} / \mathrm{kg}$ of normal saline, without any improvement. Plan is Total Fluid needed for this baby in $\mathbf{2 4}$ hours $=100 \times 2.5=250 \mathrm{ml} /$ day .

Fluid to be given every 8 hours $=85 \mathrm{ml}$. Let us learn how much dopamine to be added in 8 hours fluid i.e. 85 ml to be given at a rate of $10 \mathrm{mcg} / \mathrm{kg} / \mathrm{min}$.

Amount of dopamine required in one minute $=10 \times 2.5=25 \mathrm{mcg}$
Amount of dopamine required in one hour $=25 \times 60=1500 \mathrm{mcg}$
Amount of dopamine required in 8 hours $=1500 \times 8=12000 \mathrm{mcg}=12.0 \mathrm{mg}$
1 ml of available dopamine preparation $=40 \mathrm{mg}$ of dopamine
To make 12 mg of dopamine we need 0.3 ml , add this volume to 85 ml of fluid and give over 8 hours at a rate of $10 \mathrm{~m} /$ hour or at a rate of 10 micro drops $/ \mathrm{min}$ with a burette set, which will deliver dopamine at a rate of $10 \mathrm{mcg} / \mathrm{kg} / \mathrm{min}$

How to give Dobutamine

1 ml of commercially available contains 25 mg of dobutamine. In a baby weighing 3.75 kg if we want to start dobutamine at a rate of $10 \mathrm{mcg} / \mathrm{kg} / \mathrm{min}$:
$=10 \times 3.75=37.5 \mathrm{mcg} / \mathrm{min}=37.5 \times 60=2250 \mathrm{mcg} / \mathrm{hour}=2250 \times 24=54000 \mathrm{mcg} /$ day
$=54 \mathrm{mg}$ of dobutamine in 24 hours
It means if we add 2.2 ml of dobutamine in 24 ml of fluid and give @ rate of $1 \mathrm{ml} / \mathrm{hr}$ with syringe pump or 1 microdrops per min (which is virtually impossible) with the micro drip set, we will give dobutamine @ $10 \mathrm{mcg} / \mathrm{kg} / \mathrm{min}$

Increment

If we want to increase dobutamine to $15 \mathrm{mcg} / \mathrm{kg} / \mathrm{min}$ then give the same fluid @ 1.5 $\mathrm{ml} / \mathrm{hr}$

The above method is to give a separate infusion of Dobutamine, however it could also be added to $\mathbf{2 4}$ hours fluid as explained below:

e.g. 3.75 kg neonate in shock with a fluid requirement of $100 \mathrm{ml} / \mathrm{kg} /$ day, has received 2 fluid boluses of $10 \mathrm{ml} / \mathrm{kg}$ of normal saline, without any improvement. Plan is Total Fluid needed for this baby in $\mathbf{2 4}$ hours=100x3.75=375ml/day

Fluid to be given every 8 hours $=125 \mathrm{ml}$. Let us learn how much dobutamine to be added in 8 hours fluid i.e. 125 ml to be given at a rate of $10 \mathrm{mcg} / \mathrm{kg} / \mathrm{min}$

Amount of dobutamine required in one minute $=10 \times 3.75=37.5 \mathrm{mcg}$
Amount of dobutamine required in one hour $=37.5 \times 60=2250 \mathrm{mcg}$
Amount of dobutamine required in 8 hours $=2250 \times 8=18000 \mathrm{mcg}=18 \mathrm{mg}$
1 ml of available dobutamine preparation $=25 \mathrm{mg}$ of dobutamine
To make 18 mg of dobutamine we need 0.7 ml , add this volume to 125 ml of fluid and give over 8 hours at a rate of $15 \mathrm{ml} /$ hour or at a rate of 15 micro drops $/ \mathrm{min}$ with a burette set, which will deliver dobutamine at a rate of $10 \mathrm{mcg} / \mathrm{kg} / \mathrm{min}$

